LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iterative Graph Seeking for Object Tracking

Photo from wikipedia

To effectively solve the challenges in object tracking, such as large deformation and severe occlusion, many existing methods use graph-based models to capture target part relations, and adopt a sequential… Click to show full abstract

To effectively solve the challenges in object tracking, such as large deformation and severe occlusion, many existing methods use graph-based models to capture target part relations, and adopt a sequential scheme of target part selection, part matching, and state estimation. However, such methods have two major drawbacks: 1) inaccurate part selection leads to performance deterioration of part matching and state estimation and 2) there are insufficient effective global constraints for local part selection and matching. In this paper, we propose a new object tracking method based on iterative graph seeking, which integrate target part selection, part matching, and state estimation using a unified energy minimization framework. Our method also incorporates structural information in local parts variations using the global constraint. We devise an alternative iteration scheme to minimize the energy function for searching the most plausible target geometric graph. Experimental results on several challenging benchmarks (i.e., VOT2015, OTB2013, and OTB2015) demonstrate improved performance and robustness in comparison with existing algorithms.

Keywords: part; graph seeking; object tracking; iterative graph; part selection

Journal Title: IEEE Transactions on Image Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.