LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Video Summarization Via Multiview Representative Selection

Photo by mattykwong1 from unsplash

Video contents are inherently heterogeneous. To exploit different feature modalities in a diverse video collection for video summarization, we propose to formulate the task as a multiview representative selection problem.… Click to show full abstract

Video contents are inherently heterogeneous. To exploit different feature modalities in a diverse video collection for video summarization, we propose to formulate the task as a multiview representative selection problem. The goal is to select visual elements that are representative of a video consistently across different views (i.e., feature modalities). We present in this paper the multiview sparse dictionary selection with centroid co-regularization method, which optimizes the representative selection in each view, and enforces that the view-specific selections to be similar by regularizing them towards a consensus selection. We also introduce a diversity regularizer to favor a selection of diverse representatives. The problem can be efficiently solved by an alternating minimizing optimization with the fast iterative shrinkage thresholding algorithm. Experiments on synthetic data and benchmark video datasets validate the effectiveness of the proposed approach for video summarization, in comparison with other video summarization methods and representative selection methods such as K-medoids, sparse dictionary selection, and multiview clustering.

Keywords: video; video summarization; selection; multiview; representative selection

Journal Title: IEEE Transactions on Image Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.