LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LATE: A Level-Set Method Based on Local Approximation of Taylor Expansion for Segmenting Intensity Inhomogeneous Images

Photo from wikipedia

Intensity inhomogeneity is common in real-world images and inevitably leads to many difficulties for accurate image segmentation. Numerous level-set methods have been proposed to segment images with intensity inhomogeneity. However,… Click to show full abstract

Intensity inhomogeneity is common in real-world images and inevitably leads to many difficulties for accurate image segmentation. Numerous level-set methods have been proposed to segment images with intensity inhomogeneity. However, most of these methods are based on linear approximation, such as locally weighted mean, which may cause problems when handling images with severe intensity inhomogeneities. In this paper, we view segmentation of such images as a nonconvex optimization problem, since the intensity variation in such an image follows a nonlinear distribution. Then, we propose a novel level-set method named local approximation of Taylor expansion (LATE), which is a nonlinear approximation method to solve the nonconvex optimization problem. In LATE, we use the statistical information of the local region as a fidelity term and the differentials of intensity inhomogeneity as an adjusting term to model the approximation function. In particular, since the first-order differential is represented by the variation degree of intensity inhomogeneity, LATE can improve the approximation quality and enhance the local intensity contrast of images with severe intensity inhomogeneity. Moreover, LATE solves the optimization of function fitting by relaxing the constraint condition. In addition, LATE can be viewed as a constraint relaxation of classical methods, such as the region-scalable fitting model and the local intensity clustering model. Finally, the level-set energy functional is constructed based on the Taylor expansion approximation. To validate the effectiveness of our method, we conduct thorough experiments on synthetic and real images. Experimental results show that the proposed method clearly outperforms other solutions in comparison.

Keywords: taylor expansion; intensity inhomogeneity; approximation; intensity; level set

Journal Title: IEEE Transactions on Image Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.