LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unified No-Reference Quality Assessment of Singly and Multiply Distorted Stereoscopic Images

Photo by aiony from unsplash

A challenging problem in the no-reference quality assessment of multiply distorted stereoscopic images (MDSIs) is to simulate the monocular and binocular visual properties under a mixed type of distortions. Due… Click to show full abstract

A challenging problem in the no-reference quality assessment of multiply distorted stereoscopic images (MDSIs) is to simulate the monocular and binocular visual properties under a mixed type of distortions. Due to the joint effects of multiple distortions in MDSIs, the underlying monocular and binocular visual mechanisms have different manifestations with those of singly distorted stereoscopic images (SDSIs). This paper presents a unified no-reference quality evaluator for SDSIs and MDSIs by learning monocular and binocular local visual primitives (MB-LVPs). The main idea is to learn MB-LVPs to characterize the local receptive field properties of the visual cortex in response to SDSIs and MDSIs. Furthermore, we also consider that the learning of primitives should be performed in a task-driven manner. For this, two penalty terms including reconstruction error and quality inconsistency are jointly minimized within a supervised dictionary learning framework, generating a set of quality-oriented MB-LVPs for each single and multiple distortion modality. Given an input stereoscopic image, feature encoding is performed using the learned MB-LVPs as codebooks, resulting in the corresponding monocular and binocular responses. Finally, responses across all the modalities are fused with probabilistic weights which are determined by the modality-specific sparse reconstruction errors, yielding the final monocular and binocular features for quality regression. The superiority of our method has been verified on several SDSI and MDSI databases.

Keywords: stereoscopic images; quality; reference quality; monocular binocular; distorted stereoscopic

Journal Title: IEEE Transactions on Image Processing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.