LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases

Photo by quinoal from unsplash

Using multi-atlas registration (MAR), information carried by atlases can be transferred onto a new input image for the tasks of region-of-interest (ROI) segmentation, anatomical landmark detection, and so on. Conventional… Click to show full abstract

Using multi-atlas registration (MAR), information carried by atlases can be transferred onto a new input image for the tasks of region-of-interest (ROI) segmentation, anatomical landmark detection, and so on. Conventional atlases used in MAR methods are monomodal and contain only normal anatomical structures. Therefore, the majority of MAR methods cannot handle input multimodal pathological images, which are often collected in routine image-based diagnosis. This is because registering monomodal atlases with normal appearances to multimodal pathological images involves two major problems: 1) missing imaging modalities in the monomodal atlases and 2) influence from pathological regions. In this paper, we propose a new MAR framework to tackle these problems. In this framework, deep learning-based image synthesizers are applied for synthesizing multimodal normal atlases from conventional monomodal normal atlases. To reduce the influence from pathological regions, we further propose a multimodal low-rank approach to recover multimodal normal-looking images from multimodal pathological images. Finally, the multimodal normal atlases can be registered to the recovered multimodal images in a multi-channel way. We evaluate our MAR framework via brain ROI segmentation of multimodal tumor brain images. Due to the utilization of multimodal information and the reduced influence from pathological regions, experimental results show that registration based on our method is more accurate and robust, leading to significantly improved brain ROI segmentation compared with the state-of-the-art methods.

Keywords: registration; mar; multimodal pathological; framework; pathological images; normal atlases

Journal Title: IEEE Transactions on Image Processing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.