In modern society, clothing matching plays a pivotal role in people’s daily life, as suitable outfits can beautify their appearance directly. Nevertheless, how to make a suitable outfit has become… Click to show full abstract
In modern society, clothing matching plays a pivotal role in people’s daily life, as suitable outfits can beautify their appearance directly. Nevertheless, how to make a suitable outfit has become a daily headache for many people, especially those who do not have much sense of aesthetics. In the light of this, many research efforts have been dedicated to the task of complementary clothing matching and have achieved great success relying on the advanced data-driven neural networks. However, most existing methods overlook the rich valuable knowledge accumulated by our human beings in the fashion domain, especially the rules regarding clothing matching, like “coats go with dresses” and “silk tops cannot go with chiffon bottoms”. Towards this end, in this work, we propose a knowledge-guided neural compatibility modeling scheme, which is able to incorporate the rich fashion domain knowledge to enhance the performance of the compatibility modeling in the context of clothing matching. To better integrate the huge and implicit fashion domain knowledge into the data-driven neural networks, we present a probabilistic knowledge distillation (PKD) method, which is able to encode vast knowledge rules in a probabilistic manner. Extensive experiments on two real-world datasets have verified the guidance of rules from different sources and demonstrated the effectiveness and portability of our model. As a byproduct, we released the codes and involved parameters to benefit the research community.
               
Click one of the above tabs to view related content.