LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Order Feature Learning for Multi-Atlas Based Label Fusion: Application to Brain Segmentation With MRI

Photo from wikipedia

Multi-atlas based segmentation methods have shown their effectiveness in brain regions-of-interesting (ROIs) segmentation, by propagating labels from multiple atlases to a target image based on the similarity between patches in… Click to show full abstract

Multi-atlas based segmentation methods have shown their effectiveness in brain regions-of-interesting (ROIs) segmentation, by propagating labels from multiple atlases to a target image based on the similarity between patches in the target image and multiple atlas images. Most of the existing multi-atlas based methods use image intensity features to calculate the similarity between a pair of image patches for label fusion. In particular, using only low-level image intensity features cannot adequately characterize the complex appearance patterns (e.g., the high-order relationship between voxels within a patch) of brain magnetic resonance (MR) images. To address this issue, this paper develops a high-order feature learning framework for multi-atlas based label fusion, where high-order features of image patches are extracted and fused for segmenting ROIs of structural brain MR images. Specifically, an unsupervised feature learning method (i.e., means-covariances restricted Boltzmann machine, mcRBM) is employed to learn high-order features (i.e., mean and covariance features) of patches in brain MR images. Then, a group-fused sparsity dictionary learning method is proposed to jointly calculate the voting weights for label fusion, based on the learned high-order and the original image intensity features. The proposed method is compared with several state-of-the-art label fusion methods on ADNI, NIREP and LONI-LPBA40 datasets. The Dice ratio achieved by our method is 88.30%, 88.83%, 79.54% and 81.02% on left and right hippocampus on the ADNI, NIREP and LONI-LPBA40 datasets, respectively, while the best Dice ratio yielded by the other methods are 86.51%, 87.39%, 78.48% and 79.65% on three datasets, respectively.

Keywords: label fusion; high order; image; brain

Journal Title: IEEE Transactions on Image Processing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.