LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

OFF-eNET: An Optimally Fused Fully End-to-End Network for Automatic Dense Volumetric 3D Intracranial Blood Vessels Segmentation

Photo by aminmoshrefi from unsplash

Intracranial blood vessels segmentation from computed tomography angiography (CTA) volumes is a promising biomarker for diagnosis and therapeutic treatment in cerebrovascular diseases. These segmentation outputs are a fundamental requirement in… Click to show full abstract

Intracranial blood vessels segmentation from computed tomography angiography (CTA) volumes is a promising biomarker for diagnosis and therapeutic treatment in cerebrovascular diseases. These segmentation outputs are a fundamental requirement in the development of automated decision support systems for preoperative assessment or intraoperative guidance in neuropathology. The state-of-the-art in medical image segmentation methods are reliant on deep learning architectures based on convolutional neural networks. However, despite their popularity, there is a research gap in the current deep learning architectures optimized to address the technical challenges in blood vessel segmentation. These challenges include: (i) the extraction of concrete brain vessels close to the skull; and (ii) the precise marking of the vessel locations. We propose an Optimally Fused Fully end-to-end Network (OFF-eNET) for automatic segmentation of the volumetric 3D intracranial vascular structures. OFF-eNET comprises of three modules. In the first module, we exploit the up-skip connections to enhance information flow, and dilated convolution for detailed preservation of spatial feature map that are designed for thin blood vessels. In the second module, we employ residual mapping along with inception module for speedy network convergence and richer visual representation. For the third module, we make use of the transferred knowledge in the form of cascaded training strategy to gradually optimize the three segmentation stages (basic, complete, and enhanced) to segment thin vessels located close to the skull. All these modules are designed to be computationally efficient. Our OFF-eNET, evaluated using 70 CTA image volumes, resulted in 90.75% performance in the segmentation of intracranial blood vessels and outperformed the state-of-the-art counterparts.

Keywords: vessels segmentation; blood vessels; segmentation; intracranial blood; network

Journal Title: IEEE Transactions on Image Processing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.