In computational pathology, automated tissue phenotyping in cancer histology images is a fundamental tool for profiling tumor microenvironments. Current tissue phenotyping methods use features derived from image patches which may… Click to show full abstract
In computational pathology, automated tissue phenotyping in cancer histology images is a fundamental tool for profiling tumor microenvironments. Current tissue phenotyping methods use features derived from image patches which may not carry biological significance. In this work, we propose a novel multiplex cellular community-based algorithm for tissue phenotyping integrating cell-level features within a graph-based hierarchical framework. We demonstrate that such integration offers better performance compared to prior deep learning and texture-based methods as well as to cellular community based methods using uniplex networks. To this end, we construct cell-level graphs using texture, alpha diversity and multi-resolution deep features. Using these graphs, we compute cellular connectivity features which are then employed for the construction of a patch-level multiplex network. Over this network, we compute multiplex cellular communities using a novel objective function. The proposed objective function computes a low-dimensional subspace from each cellular network and subsequently seeks a common low-dimensional subspace using the Grassmann manifold. We evaluate our proposed algorithm on three publicly available datasets for tissue phenotyping, demonstrating a significant improvement over existing state-of-the-art methods.
               
Click one of the above tabs to view related content.