LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

KT-GAN: Knowledge-Transfer Generative Adversarial Network for Text-to-Image Synthesis

Photo from wikipedia

This paper presents a new framework, Knowledge-Transfer Generative Adversarial Network (KT-GAN), for fine-grained text-to-image generation. We introduce two novel mechanisms: an Alternate Attention-Transfer Mechanism (AATM) and a Semantic Distillation Mechanism… Click to show full abstract

This paper presents a new framework, Knowledge-Transfer Generative Adversarial Network (KT-GAN), for fine-grained text-to-image generation. We introduce two novel mechanisms: an Alternate Attention-Transfer Mechanism (AATM) and a Semantic Distillation Mechanism (SDM), to help generator better bridge the cross-domain gap between text and image. The AATM updates word attention weights and attention weights of image sub-regions alternately, to progressively highlight important word information and enrich details of synthesized images. The SDM uses the image encoder trained in the Image-to-Image task to guide training of the text encoder in the Text-to-Image task, for generating better text features and higher-quality images. With extensive experimental validation on two public datasets, our KT-GAN outperforms the baseline method significantly, and also achieves the competive results over different evaluation metrics.

Keywords: generative adversarial; image; transfer generative; text image; knowledge transfer

Journal Title: IEEE Transactions on Image Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.