LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Lightweight Depth Estimation Network for Wide-Baseline Light Fields

Photo from wikipedia

Existing traditional and ConvNet-based methods for light field depth estimation mainly work on the narrow-baseline scenario. This paper explores the feasibility and capability of ConvNets to estimate depth in another… Click to show full abstract

Existing traditional and ConvNet-based methods for light field depth estimation mainly work on the narrow-baseline scenario. This paper explores the feasibility and capability of ConvNets to estimate depth in another promising scenario: wide-baseline light fields. Due to the deficiency of training samples, a large-scale and diverse synthetic wide-baseline dataset with labelled data is introduced for depth prediction tasks. Considering the practical goal for real-world applications, we design an end-to-end trained lightweight convolutional network to infer depths from light fields, called LLF-Net. The proposed LLF-Net is built by incorporating a cost volume which allows variable angular light field inputs and an attention module that enables to recover details at occlusion areas. Evaluations are made on the synthetic and real-world wide-baseline light fields, and experimental results show that the proposed network achieves the best performance when compared to recent state-of-the-art methods. We also evaluate our LLF-Net on narrow-baseline datasets, and it consequently improves the performance of previous methods.

Keywords: depth; wide baseline; baseline light; light fields; network; baseline

Journal Title: IEEE Transactions on Image Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.