LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Focus Volume Regularization in Shape From Focus

Photo from wikipedia

Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus… Click to show full abstract

Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches.

Keywords: focus volume; shape; shape priors; focus; shape focus; shape prior

Journal Title: IEEE Transactions on Image Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.