LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Dichromatic Model Estimation Under AC Light Sources

Photo from wikipedia

The dichromatic reflection model has been popularly exploited for computer vison tasks, such as color constancy and highlight removal. However, dichromatic model estimation is an severely ill-posed problem. Thus, several… Click to show full abstract

The dichromatic reflection model has been popularly exploited for computer vison tasks, such as color constancy and highlight removal. However, dichromatic model estimation is an severely ill-posed problem. Thus, several assumptions have been commonly made to estimate the dichromatic model, such as white-light (highlight removal) and the existence of highlight regions (color constancy). In this paper, we propose a spatio-temporal deep network to estimate the dichromatic parameters under AC light sources. The minute illumination variations can be captured with high-speed camera. The proposed network is composed of two sub-network branches. From high-speed video frames, each branch generates chromaticity and coefficient matrices, which correspond to the dichromatic image model. These two separate branches are jointly learned by spatio-temporal regularization. As far as we know, this is the first work that aims to estimate all dichromatic parameters in computer vision. To validate the model estimation accuracy, it is applied to color constancy and highlight removal. Both experimental results show that the dichromatic model can be estimated accurately via the proposed deep network.

Keywords: model estimation; model; dichromatic model; light sources; network

Journal Title: IEEE Transactions on Image Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.