LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PoT-GAN: Pose Transform GAN for Person Image Synthesis

Photo from wikipedia

Pose-based person image synthesis aims to generate a new image containing a person with a target pose conditioned on a source image containing a person with a specified pose. It… Click to show full abstract

Pose-based person image synthesis aims to generate a new image containing a person with a target pose conditioned on a source image containing a person with a specified pose. It is challenging as the target pose is arbitrary and often significantly differs from the specified source pose, which leads to large appearance discrepancy between the source and the target images. This paper presents the Pose Transform Generative Adversarial Network (PoT-GAN) for person image synthesis where the generator explicitly learns the transform between the two poses by manipulating the corresponding multi-scale feature maps. By incorporating the learned pose transform information into the multi-scale feature maps of the source image in a GAN architecture, our method reliably transfers the appearance of the person in the source image to the target pose with no need for any hard-coded spatial information depicting the change of pose. According to both qualitative and quantitative results, the proposed PoT-GAN demonstrates a state-of-the-art performance on three publicly available datasets for person image synthesis.

Keywords: image; image synthesis; person; person image; gan

Journal Title: IEEE Transactions on Image Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.