A lightweight blind image denoiser, called blind compact denoising network (BCDNet), is proposed in this paper to achieve excellent trade-offs between performance and network complexity. With only 330K parameters, the… Click to show full abstract
A lightweight blind image denoiser, called blind compact denoising network (BCDNet), is proposed in this paper to achieve excellent trade-offs between performance and network complexity. With only 330K parameters, the proposed BCDNet is composed of the compact denoising network (CDNet) and the guidance network (GNet). From a noisy image, GNet extracts a guidance feature, which encodes the severity of the noise. Then, using the guidance feature, CDNet filters the image adaptively according to the severity to remove the noise effectively. Moreover, by reducing the number of parameters without compromising the performance, CDNet achieves denoising not only effectively but also efficiently. Experimental results show that the proposed BCDNet yields state-of-the-art or competitive denoising performances on various datasets while requiring significantly fewer parameters.
               
Click one of the above tabs to view related content.