LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Portal Vein and Hepatic Vein Segmentation in Multi-Phase MR Images Using Flow-Guided Change Detection

Photo from wikipedia

Segmenting portal vein (PV) and hepatic vein (HV) from magnetic resonance imaging (MRI) scans is important for hepatic tumor surgery. Compared with single phase-based methods, multiple phases-based methods have better… Click to show full abstract

Segmenting portal vein (PV) and hepatic vein (HV) from magnetic resonance imaging (MRI) scans is important for hepatic tumor surgery. Compared with single phase-based methods, multiple phases-based methods have better scalability in distinguishing HV and PV by exploiting multi-phase information. However, these methods just coarsely extract HV and PV from different phase images. In this paper, we propose a unified framework to automatically and robustly segment 3D HV and PV from multi-phase MR images, which considers both the change and appearance caused by the vascular flow event to improve segmentation performance. Firstly, inspired by change detection, flow-guided change detection (FGCD) is designed to detect the changed voxels related to hepatic venous flow by generating hepatic venous phase map and clustering the map. The FGCD uniformly deals with HV and PV clustering by the proposed shared clustering, thus making the appearance correlated with portal venous flow robustly delineate without increasing framework complexity. Then, to refine vascular segmentation results produced by both HV and PV clustering, interclass decision making (IDM) is proposed by combining the overlapping region discrimination and neighborhood direction consistency. Finally, our framework is evaluated on multi-phase clinical MR images of the public dataset (TCGA) and local hospital dataset. The quantitative and qualitative evaluations show that our framework outperforms the existing methods.

Keywords: change detection; flow; phase; phase images; vein; multi phase

Journal Title: IEEE Transactions on Image Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.