LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Supervised Multi-Category Counting Networks for Automatic Check-Out

Photo by jareddrice from unsplash

The practical task of Automatic Check-Out (ACO) is to accurately predict the presence and count of each product in an arbitrary product combination. Beyond the large-scale and the fine-grained nature… Click to show full abstract

The practical task of Automatic Check-Out (ACO) is to accurately predict the presence and count of each product in an arbitrary product combination. Beyond the large-scale and the fine-grained nature of product categories as its main challenges, products are always continuously updated in realistic check-out scenarios, which is also required to be solved in an ACO system. Previous work in this research line almost depends on the supervisions of labor-intensive bounding boxes of products by performing a detection paradigm. While, in this paper, we propose a Self-Supervised Multi-Category Counting (S2MC2) network to leverage the point-level supervisions of products in check-out images to both lower the labeling cost and be able to return ACO predictions in a class incremental setting. Specifically, as a backbone, our S2MC2 is built upon a counting module in a class-agnostic counting fashion. Also, it consists of several crucial components including an attention module for capturing fine-grained patterns and a domain adaptation module for reducing the domain gap between single product images as training and check-out images as test. Furthermore, a self-supervised approach is utilized in S2MC2 to initialize the parameters of its backbone for better performance. By conducting comprehensive experiments on the large-scale automatic check-out dataset RPC, we demonstrate that our proposed S2MC2 achieves superior accuracy in both traditional and incremental settings of ACO tasks over the competing baselines.

Keywords: self supervised; supervised multi; check; category counting; automatic check; multi category

Journal Title: IEEE Transactions on Image Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.