LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised Meta Learning With Multiview Constraints for Hyperspectral Image Small Sample set Classification

The difficulties of obtaining sufficient labeled samples have always been one of the factors hindering deep learning models from obtaining high accuracy in hyperspectral image (HSI) classification. To reduce the… Click to show full abstract

The difficulties of obtaining sufficient labeled samples have always been one of the factors hindering deep learning models from obtaining high accuracy in hyperspectral image (HSI) classification. To reduce the dependence of deep learning models on training samples, meta learning methods have been introduced, effectively improving the classification accuracy in small sample set scenarios. However, the existing methods based on meta learning still need to construct a labeled source data set with several pre-collected HSIs, and must utilize a large number of labeled samples for meta-training, which is actually time-consuming and labor-intensive. To solve this problem, this paper proposes a novel unsupervised meta learning method with multiview constraints for HSI small sample set classification. Specifically, the proposed method first builds an unlabeled source data set using unlabeled HSIs. Then, multiple spatial-spectral multiview features of each unlabeled sample are generated to construct tasks for unsupervised meta learning. Finally, the designed residual relation network is used for meta-training and small sample set classification based on the voting strategy. Compared with existing supervised meta learning methods for HSI classification, our method can only utilize HSIs without any label for unsupervised meta learning, which significantly reduces the number of requisite labeled samples in the whole classification process. To verify the effectiveness of the proposed method, extensive experiments are carried out on 8 public HSIs in the cross-domain and in-domain classification scenarios. The statistical results demonstrate that, compared with existing supervised meta learning methods and other advanced classification models, the proposed method can achieve competitive or better classification performance in small sample set scenarios.

Keywords: classification; small sample; meta learning; sample set

Journal Title: IEEE Transactions on Image Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.