LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Object Point Set Inductive Tracker for Multi-Object Tracking and Segmentation

Photo by florianklauer from unsplash

Multi-object tracking and segmentation (MOTS) is a derivative task of multi-object tracking (MOT). The new setting encourages the learning of more discriminative high-quality embeddings. In this paper, we focus on… Click to show full abstract

Multi-object tracking and segmentation (MOTS) is a derivative task of multi-object tracking (MOT). The new setting encourages the learning of more discriminative high-quality embeddings. In this paper, we focus on the problem of exploring the relationship between the segmenter and the tracker, and propose an efficient Object Point set Inductive Tracker (OPITrack) based on it. First, we discover that after a single attention layer, the high-dimensional, key point embedding will show feature averaging. To alleviate this phenomenon, we propose an embedding generalization training strategy for sparse training and dense testing. This strategy allows the network to increase randomness in training and encourages the tracker to learn more discriminative features. In addition, to learn the desired embedding space, we propose a general Trip-hard sample augmentation loss. The loss uses patches that are not distinguishable by the segmenter to join the feature learning and force the embedding network to learn the difference between false positives and true positives. Our method was validated on two MOTS benchmark datasets and achieved promising results. In addition, our OPITrack can achieve better performance for the raw model while costing less video memory (VRAM) at training time.

Keywords: object tracking; tracking segmentation; tracker; multi object; point

Journal Title: IEEE Transactions on Image Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.