LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disentangled Capsule Routing for Fast Part-Object Relational Saliency

Photo from wikipedia

Recently, the Part-Object Relational (POR) saliency underpinned by the Capsule Network (CapsNet) has been demonstrated to be an effective modeling mechanism to improve the saliency detection accuracy. However, it is… Click to show full abstract

Recently, the Part-Object Relational (POR) saliency underpinned by the Capsule Network (CapsNet) has been demonstrated to be an effective modeling mechanism to improve the saliency detection accuracy. However, it is widely known that the current capsule routing operations have huge computational complexity, which seriously limited the usability of the POR saliency models in real-time applications. To this end, this paper takes an early step towards a fast POR saliency inference by proposing a novel disentangled part-object relational network. Concretely, we disentangle horizontal routing and vertical routing from the original omnidirectional capsule routing, thus generating Disentangled Capsule Routing (DCR). This mechanism enjoys two advantages. On one hand, DCR that disentangles orthogonal 1D (i.e., vertical and horizontal) routing greatly reduces parameters and routing complexity, resulting in much faster inference than omnidirectional 2D routing adopted by existing CapsNets. On the other hand, thanks to the light POR cues explored by DCR, we could conveniently integrate the part-object routing process to different feature layers in CNN, rather than just applying it to the small-scaled one as in previous works. This helps to increase saliency inference accuracy. Compared to previous POR saliency detectors, DPORTNet infers visual saliency $\left ({{5 \sim 9} }\right) \times $ faster, and is more accurate. DPORTNet is available under the open-source license at https://github.com/liuyi1989/DCR.

Keywords: saliency; part object; capsule routing; capsule; object relational

Journal Title: IEEE Transactions on Image Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.