LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalized HARQ Protocols with Delayed Channel State Information and Average Latency Constraints

Photo from wikipedia

In many wireless systems, the signal-to-interference-and-noise ratio that is applicable to a certain transmission, referred to as channel state information (CSI), can only be learned after the transmission has taken… Click to show full abstract

In many wireless systems, the signal-to-interference-and-noise ratio that is applicable to a certain transmission, referred to as channel state information (CSI), can only be learned after the transmission has taken place and is thereby delayed (outdated). In such systems, hybrid automatic repeat request (HARQ) protocols are often used to achieve high throughput with low latency. This paper put forth the family of expandable message space (EMS) protocols, that generalize the HARQ protocol and allow for rate adaptation based on delayed CSI at the transmitter (CSIT). Assuming a block-fading channel, the proposed EMS protocols are analyzed using dynamic programming. When full delayed CSIT is available and there is a constraint on the average decoding time, it is shown that the optimal zero outage EMS protocol has a particularly simple operational interpretation and that the throughput is identical to that of the backtrack retransmission request (BRQ) protocol. We also devise EMS protocols for the case in which CSIT is only available through a finite number of feedback messages. The numerical results demonstrate that BRQ approaches the ergodic capacity quickly compared with HARQ, while EMS protocols with only three and four feedback messages achieve throughputs, that are only slightly worse than that of BRQ.

Keywords: harq protocols; information; harq; state information; channel state; ems protocols

Journal Title: IEEE Transactions on Information Theory
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.