LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strong Secrecy for Interference Channels Based on Channel Resolvability

Interference channels with confidential messages are studied under strong secrecy constraints, based on the framework of channel resolvability theory. It is shown that if the random binning rate for securing… Click to show full abstract

Interference channels with confidential messages are studied under strong secrecy constraints, based on the framework of channel resolvability theory. It is shown that if the random binning rate for securing a confidential message is above the resolution of its corresponding wiretapped channel, strong secrecy can be guaranteed. The information-spectrum method introduced by Han and Verdú is generalized to an arbitrary interference channel to obtain a direct channel resolvability result as a first step. For stationary and memoryless channels with discrete output alphabets, the results show that the achievable rates under weak and strong secrecy constraints are the same. This result is then generalized to channels with continuous output alphabets by deriving a reverse direction of Pinsker’s inequality to bound the secrecy measure from above by a function of the variational distance of relevant distributions. As an application, Gaussian interference channels are studied in which the agreement between the best known weak and strong secrecy rate regions also appear. Following the footsteps of Csiszár, Hayashi and of Bloch and Laneman, these results provide further evidence that channel resolvability is a powerful and general framework for strong secrecy analysis in multiuser networks.

Keywords: strong secrecy; channel resolvability; interference channels

Journal Title: IEEE Transactions on Information Theory
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.