LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exact Channel Synthesis

Photo by theblowup from unsplash

We consider the exact channel synthesis problem. This problem concerns the determination of the minimum amount of information required to create exact correlation remotely when there is a certain rate… Click to show full abstract

We consider the exact channel synthesis problem. This problem concerns the determination of the minimum amount of information required to create exact correlation remotely when there is a certain rate of randomness shared by two terminals. This problem generalizes an existing approximate version, in which the generated joint distribution is required to be close to a target distribution under the total variation (TV) distance measure (instead being exactly equal to the target distribution). We provide single-letter inner and outer bounds on the admissible region of the shared randomness rate and the communication rate for the exact channel synthesis problem. These two bounds coincide for doubly symmetric binary sources. We observe that for such sources, the admissible rate region for exact channel synthesis is strictly included in that for the TV-approximate version. We also extend the exact and TV-approximate channel synthesis problems to sources with countably infinite alphabets and continuous sources; the latter includes Gaussian sources. As by-products, lemmas concerning soft-covering under Rényi divergence measures are derived.

Keywords: synthesis; problem; rate; exact channel; channel synthesis

Journal Title: IEEE Transactions on Information Theory
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.