Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number $k$ of bits to… Click to show full abstract
Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number $k$ of bits to send to the base station, and his signal gets attenuated by a random channel gain (quasi-static fading). In this paper we consider the many-user asymptotics of Chen-Chen-Guo’2017, where the number of users grows linearly with the blocklength. Differently, though, we adopt a per-user probability of error (PUPE) criterion (as opposed to classical joint-error probability criterion). Under PUPE the finite energy-per-bit communication is possible, and we are able to derive bounds on the tradeoff between energy and spectral efficiencies. We reconfirm the curious behaviour (previously observed for non-fading MAC) of the possibility of almost perfect multi-user interference (MUI) cancellation for user densities below a critical threshold. Further, we demonstrate the suboptimality of standard solutions such as orthogonalization (i.e. TDMA/FDMA) and treating interference as noise (i.e. pseudo-random CDMA without multi-user detection). Notably, the problem treated here can be seen as a variant of support recovery in compressed sensing for the unusual definition of sparsity with one non-zero entry per each contiguous section of $2^{k}$ coordinates. This identifies our problem with that of the sparse regression codes (SPARCs) and hence our results can be equivalently understood in the context of SPARCs with sections of length 2100. Finally, we discuss the relation of the almost perfect MUI cancellation property and the replica-method predictions.
               
Click one of the above tabs to view related content.