LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Criss-Cross Insertion and Deletion Correcting Codes

Photo from wikipedia

This paper studies the problem of constructing codes correcting deletions in arrays. Under this model, it is assumed that an $n\times n$ array can experience deletions of rows and columns.… Click to show full abstract

This paper studies the problem of constructing codes correcting deletions in arrays. Under this model, it is assumed that an $n\times n$ array can experience deletions of rows and columns. These deletion errors are referred to as $(t_r,t_c)$-criss-cross deletions if $t_r$ rows and $t_c$ columns are deleted, while a code correcting these deletion patterns is called a $(t_r,t_c)$-criss-cross deletion correction code. The definitions for criss-cross insertions are similar. It is first shown that when $t_r=t_c$ the problems of correcting criss-cross deletions and criss-cross insertions are equivalent. The focus of this paper lies on the case of $(1,1)$-criss-cross deletions. A non-asymptotic upper bound on the cardinality of $(1,1)$-criss-cross deletion correction codes is shown which assures that the redundancy is at least $2n-3+2\log n$ bits. A code construction with an existential encoding and an explicit decoding algorithm is presented. The redundancy of the construction is at most $2n+4 \log n + 7 +2 \log e$. A construction with explicit encoder and decoder is presented. The explicit encoder adds an extra $5\log n + 5$ bits of redundancy to the construction.

Keywords: construction; cross; deletion; cross insertion; criss cross; cross deletions

Journal Title: IEEE Transactions on Information Theory
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.