LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unimodular Perfect and Nearly Perfect Sequences: a Variation of Björck’s Scheme

Photo from wikipedia

Constant Amplitude (CA), Zero Auto Correlation (ZAC) sequences (or CAZAC sequences, aka perfect sequences) have numerous applications. We generalize the CAZAC notion to what we term as CASAC by permitting… Click to show full abstract

Constant Amplitude (CA), Zero Auto Correlation (ZAC) sequences (or CAZAC sequences, aka perfect sequences) have numerous applications. We generalize the CAZAC notion to what we term as CASAC by permitting small autocorrelations (SAC). We extend Björck’s classification result of two-valued CAZAC sequences by providing a complete classification of all almost 2-valued (i.e., two-valued except for the first position which uses a third value) CASAC sequences. While Björck’s original work dealt only with primes p, we extend his ideas to any abelian group of order $v\equiv 1\pmod {4}$ , as opposed to restricting just to the prime fields GF(p). Björck sequences have better ambiguity function than Zadoff-Chu sequences, making them suitable for radar and communications applications in the presence of high Doppler shifts. In fact, the discrete narrow band ambiguity function has an optimal bound in case of Björck sequences (as opposed to Gauss sequences). A one-parameter infinite family of CASAC we construct would have applications in Multiple-Input Multiple-Output (MIMO) areas. Toward MIMO applications, we introduce a performance measure we term as cross merit factor to study cross correlation behavior, generalizing the well-known notion of Golay Merit Factor (GMF).

Keywords: variation rck; nearly perfect; perfect sequences; sequences variation; perfect nearly; unimodular perfect

Journal Title: IEEE Transactions on Information Theory
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.