LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal rate-limited secret key generation from Gaussian sources using lattices

Photo by hudsoncrafted from unsplash

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an eavesdropper, and show that it achieves the strong secret key capacity in the… Click to show full abstract

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are the use of the modulo lattice operation to extract the channel intrinsic randomness, based on the notion of flatness factor, together with a randomized lattice quantization technique to quantize the continuous source. Compared to previous works, we introduce two new notions of flatness factor based on $L^1$ distance and KL divergence, respectively, which might be of independent interest. We prove the existence of secrecy-good lattices under $L^1$ distance and KL divergence, whose $L^1$ and KL flatness factors vanish for volume-to-noise ratios up to $2\pi e$. This improves upon the volume-to-noise ratio threshold $2\pi$ of the $L^{\infty}$ flatness factor.

Keywords: secret key; gaussian sources; key generation; rate; generation gaussian

Journal Title: IEEE Transactions on Information Theory
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.