LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

f-divergences and their applications in lossy compression and bounding generalization error

Photo from wikipedia

In this paper, we provide three applications for $f$-divergences: (i) we introduce Sanov's upper bound on the tail probability of the sum of independent random variables based on super-modular $f$-divergence… Click to show full abstract

In this paper, we provide three applications for $f$-divergences: (i) we introduce Sanov's upper bound on the tail probability of the sum of independent random variables based on super-modular $f$-divergence and show that our generalized Sanov's bound strictly improves over ordinary one, (ii) we consider the lossy compression problem which studies the set of achievable rates for a given distortion and code length. We extend the rate-distortion function using mutual $f$-information and provide new and strictly better bounds on achievable rates in the finite blocklength regime using super-modular $f$-divergences, and (iii) we provide a connection between the generalization error of algorithms with bounded input/output mutual $f$-information and a generalized rate-distortion problem. This connection allows us to bound the generalization error of learning algorithms using lower bounds on the $f$-rate-distortion function. Our bound is based on a new lower bound on the rate-distortion function that (for some examples) strictly improves over previously best-known bounds.

Keywords: distortion; rate distortion; generalization error; lossy compression

Journal Title: IEEE Transactions on Information Theory
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.