LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ADS-BI: Compressed Indexing of ADS-B Data

Photo from wikipedia

The introduction of ADS-B, a satellite-based aircraft tracking technology, and the increasing installation of ADS-B receiver stations around the globe eases the tracking of aircraft, compared with traditional solutions using… Click to show full abstract

The introduction of ADS-B, a satellite-based aircraft tracking technology, and the increasing installation of ADS-B receiver stations around the globe eases the tracking of aircraft, compared with traditional solutions using secondary radar. Given the large scale of ADS-B implementation and the high frequency of data collection, storing and managing ADS-B induced data has become increasingly difficult: The worldwide ADS-B data easily aggregates to several hundreds of terabyte per year, depending on the spatial coverage and temporal resolution. Standard data management solutions do not work well for ADS-B data, since they either require a large uncompressed index structure or cannot be queried efficiently. In this paper, we propose a novel compressed index structure for managing ADS-B data, called ADS-BI. The essential building blocks are spatio-temporal reference partitioning, reordering, and compression. On top of the partitioned, compressed representation, metadata is stored effectively, and exploited during query answering for typical ATM related task such as trajectory adherence evaluation, as well as complexity and safety metrics assessment by only accessing parts of the compressed data as necessary. Our novel index structure is evaluated on worldwide ADS-B data for a week in November 2016. For comparison, we implemented ten standard compression/indexing methods. The experiments reveal that none of these traditional methods can target the sweet spot between a small storage and efficient query answering. Our novel technique provides fast query answering at smallest storage costs. This paper contributes toward efficient handling of the increasing amount of traffic data in air traffic management, and eventually, toward more efficient and safer air transportation.

Keywords: ads compressed; ads data; query answering; compressed indexing; index structure; indexing ads

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.