Traffic sign detection plays an important role in intelligent transportation systems. But traffic signs are still not well-detected by deep convolution neural network-based methods because the sizes of their feature… Click to show full abstract
Traffic sign detection plays an important role in intelligent transportation systems. But traffic signs are still not well-detected by deep convolution neural network-based methods because the sizes of their feature maps are constrained, and the environmental context information has not been fully exploited by other researchers. What we need is a way to incorporate relevant context detail from the neighboring layers into the detection architecture. We have developed a novel traffic sign detection approach based on recurrent attention for multi-scale analysis and use of local context in the image. Experiments on the German traffic sign detection benchmark and the Tsinghua-Tencent 100K data set demonstrated that our approach obtained an accuracy comparable to the state-of-the-art approaches in traffic sign detection.
               
Click one of the above tabs to view related content.