Vehicle detection and tracking play an important role in autonomous vehicles and intelligent transportation systems. Adverse weather conditions such as the presence of heavy snow, fog, rain, dust or sandstorm… Click to show full abstract
Vehicle detection and tracking play an important role in autonomous vehicles and intelligent transportation systems. Adverse weather conditions such as the presence of heavy snow, fog, rain, dust or sandstorm situations are dangerous restrictions on camera’s function by reducing visibility, affecting driving safety. Indeed, these restrictions impact the performance of detection and tracking algorithms utilized in the traffic surveillance systems and autonomous driving applications. In this article, we start by proposing a visibility enhancement scheme consisting of three stages: illumination enhancement, reflection component enhancement, and linear weighted fusion to improve the performance. Then, we introduce a robust vehicle detection and tracking approach using a multi-scale deep convolution neural network. The conventional Gaussian mixture probability hypothesis density filter based tracker is utilized jointly with hierarchical data associations (HDA), which splits into detection-to-track and track-to-track associations. Herein, the cost matrix of each phase is solved using the Hungarian algorithm to compensate for the lost tracks caused by missed detection. Only detection information (i.e., bounding boxes with detection scores) is used in HDA without visual features information for rapid execution. We have also introduced a novel benchmarking dataset designed for research in applications of autonomous vehicles under adverse weather conditions called DAWN. It consists of real-world images collected with different types of adverse weather conditions. The proposed method is tested on DAWN, KITTI, and MS-COCO datasets and compared with 21 vehicle detectors. Experimental results have validated effectiveness of the proposed method which outperforms state-of-the-art vehicle detection and tracking approaches under adverse weather conditions.
               
Click one of the above tabs to view related content.