LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimized Speed Trajectories for Cyclists, Based on Personal Preferences and Traffic Light Information-A Stochastic Dynamic Programming Approach

Photo from wikipedia

The literature on green mobility and eco-driving in urban areas has burgeoned in recent years, with special attention to using infrastructure to vehicle (I2V) communications to obtain optimal speed trajectory… Click to show full abstract

The literature on green mobility and eco-driving in urban areas has burgeoned in recent years, with special attention to using infrastructure to vehicle (I2V) communications to obtain optimal speed trajectory which minimize the economic and environmental costs. This article shares the concept with these studies but turns the spotlight on cyclists. It examines the problem of finding optimal speed trajectory for a cyclist in signalised urban areas. Unlike the available studies on motorised vehicles which predominantly designed for pre-defined, fixed traffic lights timing, this article uses an algorithm based on stochastic dynamic programming to explicitly address uncertainty in traffic light timing. Moreover, through a comprehensive set of simulation experiments, the article examines the impact of the speed advice’s starting point as well as the cyclist’s willingness for changing his/her speed on enhancing the performance. The proposed approach targets various performance metrics such as minimising the total travel time, energy consumption, or the probability of stopping at a red light. Hence, the resulting speed advice can be tailored according to the personal preferences of each cyclist. In a simulation case study, the results of the proposed approach is also compared with an existing approach in the literature.

Keywords: dynamic programming; speed; stochastic dynamic; approach; traffic light

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.