LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HazDesNet: An End-to-End Network for Haze Density Prediction

Vision-based intelligent systems such as driver assistance systems and transportation systems should take into account weather conditions. The presence of haze in images can be a critical threat to driving… Click to show full abstract

Vision-based intelligent systems such as driver assistance systems and transportation systems should take into account weather conditions. The presence of haze in images can be a critical threat to driving scenarios. Haze density measures the visibility and usability of hazy images captured in real-world conditions. The prediction of haze density can be valuable in various vision-based intelligent systems, especially in those systems deployed in outdoor environments. Haze density prediction is a challenging task since the haze and many scene contents have a lot in common in appearance. Existing methods generally utilize different priors and design complex handcrafted features to predict the visibility or haze density of the image. In this article, we propose a novel end-to-end convolutional neural network (CNN) based method to predict haze density, named as HazDesNet. Our HazDesNet takes a hazy image as input and predicts a pixel-level haze density map. The density map is then refined and smoothed, and the average of the refined map is calculated as the global haze density of the image. To verify the performance of HazDesNet, a subjective human study is performed to build a Human Perceptual Haze Density (HPHD) database, which includes 500 real-world hazy images and 100 synthetic hazy images, and the corresponding human-rated perceptual haze density scores. Experimental results show that our method achieves the best haze density prediction performance on our built HPHD database and existing databases. Besides the global quantitative results, our HazDesNet is capable of predicting a continuous, stable, fine, and high-resolution haze density map. We will make the database and code publicly available at https://github.com/JiaheZhang/HazDesNet.

Keywords: density; density prediction; hazdesnet; haze density; end

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.