LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Deep Learning Approach to Detect Real-Time Vehicle Maneuvers Based on Smartphone Sensors

Photo from wikipedia

Identifying vehicle maneuvers in the context of Connected Vehicles (CV) system brings huge potentials to enhance traffic safety. However, this process requires various advanced sensors, which are either available for… Click to show full abstract

Identifying vehicle maneuvers in the context of Connected Vehicles (CV) system brings huge potentials to enhance traffic safety. However, this process requires various advanced sensors, which are either available for luxury vehicles or expensive to install. Differently, smartphone is a more feasible choice with high penetration rate and various built-in sensors. Among the existing studies of applying the smartphone to detect vehicle maneuvers, most treated the detection as a classification problem without considering the real-world application. For example, the smartphone was fixed. Too many descriptive features were generated from the sensor data. To alleviate these problems, this paper developed a vehicle maneuvers detection system using a common smartphone with GPS, gyroscope, accelerometer, and magnetometer sensors. We first released the constraints on the smartphone’s position through a coordination system reorientation method. Then, simply filtered sensor data were directly used. A stacked-LSTM model was built to detect the vehicle maneuvers considering the time-dependency of the sensor data. This paper compared the performance of the proposed system with previous studies and various machine learning methods, including LightGBM, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest. Extensive experimental results indicated that the proposed system accurately detected different vehicle maneuvers with an average F1-score of 0.98, precision of 0.97, and recall of 0.98, which outperformed the counterparts. Moreover, the model can be easily transferred to different drivers and locations. The system is robust and suitable for the real-time application as it requires simple processing of smartphone sensor data.

Keywords: system; time; smartphone; sensor data; vehicle; vehicle maneuvers

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.