LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Design Space Exploration of Multi-Mode, Two-Planetary-Gear, Power-Split Hybrid Electric Powertrains via Virtual Levers

Photo by nasa from unsplash

The recent industry trend of incorporating multiple planetary gears (PG) and clutches in power-split hybrid electric vehicles has enhanced their potential fuel economy and acceleration performance. However, this increase in… Click to show full abstract

The recent industry trend of incorporating multiple planetary gears (PG) and clutches in power-split hybrid electric vehicles has enhanced their potential fuel economy and acceleration performance. However, this increase in performance potential comes at the cost of increased design and control complexity. In this paper, we propose a highly efficient design methodology that finds the optimal multi-mode, two-PG powertrain by extending our recently developed virtual lever, a modeling tool that eliminates the redundancy in the physical design space and hence minimizes the computational load associated with optimizing over multiple different types of PGs. First, every operating mode of every powertrain architecture is modeled using the virtual lever, whose parameters comprise the virtual design space. Second, the fuel economy and acceleration time are evaluated for every design in this continuous, virtual design space. Then, the powertrain architectures are compared by their respective Pareto frontiers in the fuel economy — acceleration time plane. Furthermore, a design space conversion method is used to group the evaluated designs by their respective feasible physical realizations to compare the 16 possible physical realizations of the generic Volt 2nd, which is found to be the best powertrain architecture. The proposed method uncovered several different physical realizations of the generic Volt 2nd that outperforms General Motors’ existing Chevy Volt 2nd powertrain.

Keywords: split hybrid; power split; design space; design; hybrid electric

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.