LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Statistical Properties and Airspace Capacity for Unmanned Aerial Vehicle Networks Subject to Sense-and-Avoid Safety Protocols

Photo from wikipedia

Random mobility models (RMMs) capture the random mobility patterns of mobile agents, and have been widely used as the modeling framework for the evaluation and design of mobile networks. All… Click to show full abstract

Random mobility models (RMMs) capture the random mobility patterns of mobile agents, and have been widely used as the modeling framework for the evaluation and design of mobile networks. All existing RMMs in the literature assume independent movements of mobile agents, which does not hold for unmanned aircraft systems (UASs). In particular, UASs must maintain a safe separation distance to avoid collision. In this paper, we propose a new modeling framework of random mobility models equipped with physical sense-and-avoid protocols to capture the flexible, variable, and uncertain movement patterns of UASs subject to separation safety constraints. For the random direction (RD) RMM equipped with a commonly used sense-and-avoid (S&A) protocol, named sense-and-stop (S&S), we provide its statistical properties including stationary location distribution and stationary inter-vehicle distance distribution, using the Markov analysis. This study provides knowledge on the impact of S&A protocols to critical UAS networking statistics. In addition, we define collision probabilities and airspace capacity concepts for UASs based on the inter-vehicle distance distribution, and derive their closed-form expressions. This analytical framework mathematically bridges local autonomy with global airspace capacity, and allows the impact analysis of local autonomy configurations for effective UAS airspace capacity management.

Keywords: sense; sense avoid; airspace capacity; vehicle

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.