LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AI Based Energy Efficient Routing Protocol for Intelligent Transportation System

Photo from wikipedia

The future advancement of technology in Internet of Things (IoT) paradigm, Wireless Sensor Networks (WSNs) provide sensing services to connect all the devices. In the upper layer of OSI model… Click to show full abstract

The future advancement of technology in Internet of Things (IoT) paradigm, Wireless Sensor Networks (WSNs) provide sensing services to connect all the devices. In the upper layer of OSI model designing an energy efficient routing protocol in WSN is a challenge, which can ease the work of Multi-access edge computing (MEC) in IoT applications. The advent of 6G is also playing key role for reliable communication between the sensing elements for IoT applications. These two phenomena are significantly influencing for the progress of next generation Intelligent Transportation System (ITS). Therefore, the proposed work presents a novel method of implementing Distributed Artificial Intelligence (DAI) with neural networks for energy efficient routing as well as a fast response for intra-cluster communication of the nodes to overcome the challenges for ITS. Although there exist several works on the inter-cluster energy-efficient network, our work proposes a new way of implementing the hybrid approach of DAI and Self Organizing Map (SOM). The proposed approach proves to be a better solution in terms of overall energy consumption by the network, along with the computational challenges. Further, the work presents mathematical analysis, simulation results and comparison with the conventional techniques for justification.

Keywords: energy; energy efficient; intelligent transportation; routing protocol; efficient routing

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.