LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiological Measures of Risk Perception in Highly Automated Driving

Photo from wikipedia

Highly automated driving will likely result in drivers being out-of-the-loop during specific scenarios and engaging in a wide range of non-driving related tasks. Manifesting in lower levels of risk perception… Click to show full abstract

Highly automated driving will likely result in drivers being out-of-the-loop during specific scenarios and engaging in a wide range of non-driving related tasks. Manifesting in lower levels of risk perception to emerging events, and thus affect drivers’ availability to take-over manual control in safety-critical scenarios. In this empirical research, we measured drivers’ (N = 20) risk perception with cardiac and skin conductance indicators through a series of high-fidelity, simulated highly automated driving scenarios. By manipulating the presence of surrounding traffic and changing driving conditions as long-term risk modulators, and including a driving hazard event as a short-term risk modulator, we hypothesised that an increase in risk perception would induce greater physiological arousal. Our results demonstrate that heart rate variability features are superior at capturing arousal variations from these long-term, low to moderate risk scenarios. In contrast, skin conductance responses are more sensitive to rapidly evolving situations associated with moderate to high risk. Based on this research, future driver state monitoring systems should adopt multiple physiological measures to capture changes in the long and short term, modulation of risk perception. This will enable enhanced perception of driver readiness and improved availability to safely deal with take-over events when requested by an automated vehicle.

Keywords: perception; automated driving; risk perception; physiological measures; highly automated

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.