LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards Compact Autonomous Driving Perception With Balanced Learning and Multi-Sensor Fusion

Photo from wikipedia

We present a novel compact deep multi-task learning model to handle various autonomous driving perception tasks in one forward pass. The model performs multiple views of semantic segmentation, depth estimation,… Click to show full abstract

We present a novel compact deep multi-task learning model to handle various autonomous driving perception tasks in one forward pass. The model performs multiple views of semantic segmentation, depth estimation, light detection and ranging (LiDAR) segmentation, and bird’s eye view projection simultaneously without being supported by other models. We also provide an adaptive loss weighting algorithm to tackle the imbalanced learning issue that occurred due to plenty of given tasks. Through data pre-processing and intermediate sensor fusion techniques, the model can process and combine multiple input modalities retrieved from RGB cameras, dynamic vision sensors (DVS), and LiDAR placed at several positions on the ego vehicle. Therefore, a better understanding of a dynamically changing environment can be achieved. Based on the ablation study, the model variant trained with our proposed method achieves a better performance. Furthermore, a comparative study is also conducted to clarify its performance and effectiveness against the combination of some recent models. As a result, our model maintains better performance even with much fewer parameters. Hence, the model can inference faster with less GPU memory utilization. Moreover, the result tends to be consistent in 3 different CARLA simulation datasets and 1 real-world nuScenes-lidarseg dataset. To support future research, we share codes and other files publicly at https://github.com/oskarnatan/compact-perception.

Keywords: sensor fusion; driving perception; multi; model; perception; autonomous driving

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.