LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

OAF-Net: An Occlusion-Aware Anchor-Free Network for Pedestrian Detection in a Crowd

Photo by miguelherc96 from unsplash

Although pedestrian detection has achieved promising performance with the development of deep learning techniques, it remains a great challenge to detect heavily occluded pedestrians in crowd scenes. Therefore, to make… Click to show full abstract

Although pedestrian detection has achieved promising performance with the development of deep learning techniques, it remains a great challenge to detect heavily occluded pedestrians in crowd scenes. Therefore, to make the anchor-free network pay more attention to learning the hard examples of occluded pedestrians, we propose a simple but effective Occlusion-aware Anchor-Free Network (namely OAF-Net) for pedestrian detection in crowd scenes. Specifically, we first design a novel occlusion-aware detection head, which includes three separate center prediction branches combining with the scale and offset prediction branches. In the detection head of OAF-Net, occluded pedestrian instances are assigned to the most suitable center prediction branch according to the occlusion level of human body. To optimize the center prediction, we accordingly propose a novel weighted Focal Loss where pedestrian instances are assigned with different weights according to their visibility ratios, so that the occluded pedestrians are up-weighted during the training process. Our OAF-Net is able to model different occlusion levels of pedestrian instances effectively, and can be optimized towards catching a high-level understanding of the hard training samples of occluded pedestrians. Experiments on the challenging CityPersons, Caltech, and CrowdHuman benchmarks sufficiently validate the efficacy of our OAF-Net for pedestrian detection in crowd scenes.

Keywords: free network; pedestrian detection; occlusion; anchor free; oaf net; detection

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.