LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short-Term Traffic Flow Prediction Based on Graph Convolutional Networks and Federated Learning

Photo by dnevozhai from unsplash

This study proposes a short-term traffic flow prediction model that combines community detection-based federated learning with a graph convolutional network (GCN) to alleviate the time-consuming training, higher communication costs, and… Click to show full abstract

This study proposes a short-term traffic flow prediction model that combines community detection-based federated learning with a graph convolutional network (GCN) to alleviate the time-consuming training, higher communication costs, and data privacy risks of global GCNs as the amount of data increases. The federated community GCN (FCGCN) can achieve timely, accurate, and safe traffic state predictions in the era of big traffic data, which is critical for the efficient operation of intelligent transportation systems. The FCGCN prediction process has four steps: dividing the local subnetwork with community detection, local training based on the global parameters, uploading the local model parameters, and constructing a global model prediction based on the aggregated parameters. Numerical results on the PeMS04 and PeMS08 datasets show that the FCGCN outperforms four benchmark models, namely, the long short-term memory (LSTM), convolutional neural network (CNN), ChebNet, and graph attention network (GAT) models. The FCGCN prediction is closer to the real value, with nearly the same performance as the global model at a lower time cost, thus achieving accurate and secure short-term traffic flow predictions with three parameters: flow, speed, and occupancy.

Keywords: term traffic; traffic; prediction; traffic flow; short term

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.