LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weighted Score Fusion Based LSTM Model for High-Speed Railway Propagation Scenario Identification

Photo from wikipedia

Propagation scenario identification is of vital significance for boosting the performance of future smart high-speed railway (HSR) communication networks. This paper investigates the HSR propagation scenario identification model, based on… Click to show full abstract

Propagation scenario identification is of vital significance for boosting the performance of future smart high-speed railway (HSR) communication networks. This paper investigates the HSR propagation scenario identification model, based on deep learning networks and feature fusion methods. With the assistance of railway long-term evolution (LTE) networks, we collected the channel impulse responses in four typical HSR scenarios including unobstructed viaduct, obstructed viaduct, station and suburban. Four channel characteristics involving power delay profile, root mean square (RMS) delay spread, RMS angular spread and Ricean K-factor form the datasets used for model training and testing. Then, a novel propagation scenario identification model is proposed by merging a weighted score based feature fusion method into the long short-term memory (LSTM) neural network. The hyper-parameters of the proposed model such as time window length and numbers of hidden units and layers are determined by autocorrelation analysis and cross-validation. Finally, the model performance is evaluated by focusing on the impact of feature selection, comparison of different feature fusion methods, and computational complexity. The evaluation results show that the proposed model has high identification accuracy but acceptable computational complexity.

Keywords: propagation scenario; scenario identification; identification; model

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.