LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Federated Learning-Based Edge Caching Approach for Mobile Edge Computing-Enabled Intelligent Connected Vehicles

Photo by hajjidirir from unsplash

Massive map data transmission and the strict demand for the privacy of high-precision maps have brought significant challenges to the cache of high-precision maps in intelligent connected vehicles (ICV). Federal… Click to show full abstract

Massive map data transmission and the strict demand for the privacy of high-precision maps have brought significant challenges to the cache of high-precision maps in intelligent connected vehicles (ICV). Federal learning (FL) was introduced to reduce the pressure on the edge network and protect privacy. But the high dynamics of cars and limited resources lead to low accuracy and high training delay. We propose a joint optimization scheme of participant selection and resource allocation for federated learning. In each time slice, vehicles are determined whether to participate in training, which minimizes long-term training delay with limited energy consumption. To meet the delay and privacy requirements of high-precision map caching, we present an edge cooperative caching scheme based on federated deep reinforcement learning (F-DRL), which aims to achieve dynamic adaptive edge caching while protecting user privacy. The collaborative caching model is formulated as a Markov decision process (MDP). Dueling Deep Q Network (Dueling-DQN) is used to solve the optimal strategy, and federal learning is used for training. Enough comparative experiments to evaluate the performance of the proposed schemes. The aspects of reliability, cache hit rate, and training accuracy prove that the method effectively improves the training parameters of federated learning while meeting a high-precision map cache’s delay and reliability requirements.

Keywords: high precision; training; federated learning; connected vehicles; edge; intelligent connected

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.