Massive map data transmission and the strict demand for the privacy of high-precision maps have brought significant challenges to the cache of high-precision maps in intelligent connected vehicles (ICV). Federal… Click to show full abstract
Massive map data transmission and the strict demand for the privacy of high-precision maps have brought significant challenges to the cache of high-precision maps in intelligent connected vehicles (ICV). Federal learning (FL) was introduced to reduce the pressure on the edge network and protect privacy. But the high dynamics of cars and limited resources lead to low accuracy and high training delay. We propose a joint optimization scheme of participant selection and resource allocation for federated learning. In each time slice, vehicles are determined whether to participate in training, which minimizes long-term training delay with limited energy consumption. To meet the delay and privacy requirements of high-precision map caching, we present an edge cooperative caching scheme based on federated deep reinforcement learning (F-DRL), which aims to achieve dynamic adaptive edge caching while protecting user privacy. The collaborative caching model is formulated as a Markov decision process (MDP). Dueling Deep Q Network (Dueling-DQN) is used to solve the optimal strategy, and federal learning is used for training. Enough comparative experiments to evaluate the performance of the proposed schemes. The aspects of reliability, cache hit rate, and training accuracy prove that the method effectively improves the training parameters of federated learning while meeting a high-precision map cache’s delay and reliability requirements.
               
Click one of the above tabs to view related content.