LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical Spatio–Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting

Photo from wikipedia

Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic… Click to show full abstract

Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.

Keywords: graph convolutional; traffic; flow forecasting; term; traffic flow

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.