LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On Attack-Resilient Service Placement and Availability in Edge-Enabled IoV Networks

Photo from wikipedia

Achieving network resilience in terms of attack tolerance and service availability is critically important for Internet of Vehicles (IoV) networks where vehicles require assistance in sensitive and safety-critical applications like… Click to show full abstract

Achieving network resilience in terms of attack tolerance and service availability is critically important for Internet of Vehicles (IoV) networks where vehicles require assistance in sensitive and safety-critical applications like driving. It is particularly challenging in time-varying conditions of IoV traffic. In this paper, we study an attack-resilient optimal service placement problem to ensure disruption-free service availability to the users in edge-enabled IoV network. Our work aims to improve the user experience while minimizing the delay and simultaneously considering efficient utilization of limited edge resources. First, an optimal service placement is performed while considering traffic dynamicity and meeting the service requirements with the use of a deep reinforcement learning (DRL) framework. Next, an optimal secondary mapping and service recovery placements are performed to account for the attacks/failures at the edge. The use of DRL framework helps to adapt to dynamically varying IoV traffic and service demands. In this work, we develop three integer linear programming (ILP) models and use them in the DRL based framework to provide attack-resilient service placement and ensure service availability with efficient network performance. Extensive numerical experiments are performed to demonstrate the effectiveness of the proposed approach.

Keywords: iov networks; service; availability; attack resilient; service placement

Journal Title: IEEE Transactions on Intelligent Transportation Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.