LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advanced Block Nested Loop Join for Extending SSD Lifetime

Photo by apchf from unsplash

Flash technology trends have shown that greater densities between flash memory cells increase read/write error rates and shorten solid-state drive (SSD) device lifetimes. This is critical for enterprise systems, causing… Click to show full abstract

Flash technology trends have shown that greater densities between flash memory cells increase read/write error rates and shorten solid-state drive (SSD) device lifetimes. This is critical for enterprise systems, causing such problems as service instability and increased total cost of ownership (TCO) because of SSD replacement. Therefore, numerous studies have focused on decreasing the amount of the DBMS writes. However, there has been no research that focused on decreasing the amount of temporary writes, which are primarily created by join processing. In DBMSs, there are two major join-processing algorithms, i.e., hybrid hash join (HHJ) and sort merge join (SMJ), proven to be the best according to DBMS workload; however, the two algorithms produce temporary writes of intermediate results. Therefore, we instead look to the block-nested loop join (BNLJ); it is well-known that the two algorithms are better than BNLJ, but BNLJ creates no intermediate result writes. It is reasonable to use BNLJ for a major join algorithm if its performance can be enhanced similar to those of HHJ and SMJ, considering BNLJ's advantage of extending SSD lifetimes. Therefore, in this paper, we propose an advanced BNLJ (ANLJ) algorithm that can match the performance of the two main join algorithms.

Keywords: loop join; nested loop; extending ssd; join; block nested

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.