The proliferation of e-commerce calls for mining consumer preferences and opinions from user-generated text. To this end, topic models have been widely adopted to discover the underlying semantic themes (i.e.,… Click to show full abstract
The proliferation of e-commerce calls for mining consumer preferences and opinions from user-generated text. To this end, topic models have been widely adopted to discover the underlying semantic themes (i.e., topics). Supervised topic models have emerged to leverage discovered topics for predicting the response of interest (e.g., product quality and sales). However, supervised topic modeling remains a challenging problem because of the need to prespecify the number of topics, the lack of predictive information in topics, and limited scalability. In this paper, we propose a novel supervised topic model, Hierarchical Dirichlet Process-based Inverse Regression (HDP-IR). HDP-IR characterizes the corpus with a flexible number of topics, which prove to retain as much predictive information as the original corpus. Moreover, we develop an efficient inference algorithm capable of examining large-scale corpora (millions of documents or more). Three experiments were conducted to evaluate the predictive performance over major e-commerce benchmark testbeds of online reviews. Overall, HDP-IR outperformed existing state-of-the-art supervised topic models. Particularly, retaining sufficient predictive information improved predictive R-squared by over 17.6 percent; having topic structure flexibility contributed to predictive R-squared by at least 4.1 percent. HDP-IR provides an important step for future study on user-generated texts from a topic perspective.
               
Click one of the above tabs to view related content.