LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inferring Cognitive Wellness from Motor Patterns

Photo by primal_harmony from unsplash

Changes in the motor pattern have been shown to be useful advanced indicators of cognitive disorders, such as Parkinson's disease (PD) and cerebral small vessel disease (SVD). It would be… Click to show full abstract

Changes in the motor pattern have been shown to be useful advanced indicators of cognitive disorders, such as Parkinson's disease (PD) and cerebral small vessel disease (SVD). It would be highly advantageous to tap into data containing people's motor patterns from motion sensing devices to analyze subtle changes in cognitive abilities, thereby providing personalized interventions before the actual onset of such conditions. However, this goal is very challenging due to two main technical problems: 1) the size of data labeled by doctors is small, and 2) the available data tends to be highly imbalanced (the vast majority tend to be from normal subjects with only a small fraction from subjects with cognitive disorder). In order to effectively deal with these challenges to infer cognitive wellness from motor patterns with high accuracy, we propose the MOtor-Cognitive Analytics (MOCA) framework. The proposed MOCA first uses the random oversampling iterative random forest based feature selection method to reduce the feature space dimensionality and avoid overfitting, and then adds a bias in the optimization problem of weighted extreme learning machine to achieve good generalization ability in handling imbalanced small-sampling dataset. Experimental results on two real-world datasets including SVD and stroke patients show that MOCA can effectively reduce the rate of misdiagnosis and significantly outperform state-of-the-art methods in inferring people's cognitive capabilities. This work opens up opportunities for population-level pre-screening using motion sensing devices and can inform current discussions on reforming the health-care infrastructure.

Keywords: cognitive wellness; motor patterns; motor; wellness motor; inferring cognitive

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.