LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Cross-Modal Hashing With Hashing Functions and Unified Hash Codes Jointly Learning

Photo by thanti_riess from unsplash

Due to their high retrieval efficiency and low storage cost, cross-modal hashing methods have attracted considerable attention. Generally, compared with shallow cross-modal hashing methods, deep cross-modal hashing methods can achieve… Click to show full abstract

Due to their high retrieval efficiency and low storage cost, cross-modal hashing methods have attracted considerable attention. Generally, compared with shallow cross-modal hashing methods, deep cross-modal hashing methods can achieve a more satisfactory performance by integrating feature learning and hash codes optimizing into a same framework. However, most existing deep cross-modal hashing methods either cannot learn a unified hash code for the two correlated data-points of different modalities in a database instance or cannot guide the learning of unified hash codes by the feedback of hashing function learning procedure, to enhance the retrieval accuracy. To address the issues above, in this paper, we propose a novel end-to-end Deep Cross-Modal Hashing with Hashing Functions and Unified Hash Codes Jointly Learning (DCHUC). Specifically, by an iterative optimization algorithm, DCHUC jointly learns unified hash codes for image-text pairs in a database and a pair of hash functions for unseen query image-text pairs. With the iterative optimization algorithm, the learned unified hash codes can be used to guide the hashing function learning procedure; Meanwhile, the learned hashing functions can feedback to guide the unified hash codes optimizing procedure. Extensive experiments on three public datasets demonstrate that the proposed method outperforms the state-of-the-art cross-modal hashing methods.

Keywords: hash codes; cross modal; modal hashing; unified hash

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.