LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Heterogeneous Information Network Embedding With Meta-Path Based Proximity

Photo by bladeoftree from unsplash

Heterogeneous information network (HIN) embedding aims at learning the low-dimensional representation of nodes while preserving structure and semantics in a HIN. Existing methods mainly focus on static networks, while a… Click to show full abstract

Heterogeneous information network (HIN) embedding aims at learning the low-dimensional representation of nodes while preserving structure and semantics in a HIN. Existing methods mainly focus on static networks, while a real HIN usually evolves over time with the addition (deletion) of multiple types of nodes and edges. Because even a tiny change can influence the whole structure and semantics, the conventional HIN embedding methods need to be retrained to get the updated embeddings, which is time-consuming and unrealistic. In this paper, we investigate the problem of dynamic HIN embedding and propose a novel Dynamic HIN Embedding model (DyHNE) with meta-path based proximity. Specifically, we introduce the meta-path based first- and second-order proximities to preserve structure and semantics in HINs. As the HIN evolves over time, we naturally capture changes with the perturbation of meta-path augmented adjacency matrices. Thereafter, we learn the node embeddings by solving generalized eigenvalue problem effectively and employ eigenvalue perturbation to derive the updated embeddings efficiently without retraining. Experiments show that DyHNE outperforms the state-of-the-arts in terms of effectiveness and efficiency.

Keywords: information network; semantics; path; meta path; heterogeneous information; path based

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.